
Components and Interfaces of a ProcessManagement System for Parallel Programs?Ralph Butler1, William Gropp2, and Ewing Lusk21 Middle Tennessee State University2 Argonne National LaboratoryAbstract. Parallel jobs are di�erent from sequential jobs and require adi�erent type of process management. We present here a process man-agement system for parallel programs such as those written using MPI.A primary goal of the system, which we call MPD (for multipurposedaemon), is to be scalable. By this we mean that startup of interactiveparallel jobs comprising thousands of processes is quick, that signals canbe quickly delivered to processes, and that stdin, stdout, and stderr aremanaged intuitively. Our primary target is parallel machines made up ofclusters of SMPs, but the system is also useful in more tightly integratedenvironments. We describe how MPD enables much faster startup andbetter runtime management of parallel jobs. We show how close controlof stdio can support the easy implementation of a number of convenientsystem utilities, even a parallel debugger. We describe a simple but gen-eral interface that can be used to separate any process manager from aparallel library, which we use to keep MPD separate from MPICH.1 IntroductionA parallel programming environment may be viewed as comprising three inter-acting components: a job scheduler, which decides what resources a parallel jobconsisting of multiple processes will run on; a process manager, which starts andterminates processes and provides them with a number of services; and a parallellibrary such as MPI, which a parallel application calls upon for communications.Since these components need to communicate with one another, they are oftenintegrated into a single system. An important research question is to what ex-tent they can be separated from one another with well-de�ned interfaces so thatthey can be independently developed. A further research question is whether theresulting system can be made scalable to jobs involving thousands of commu-nicating processes. In this paper we focus on the process manager component.We describe a design and an implementation we call MPD (for multipurposedaemon) that provides both fast startup of parallel jobs and a
exible run-timeenvironment that supports parallel libraries through a small, general interface.? This work was supported by the Mathematical, Information, and Computational Sci-ences Division subprogram of the O�ce of Advanced Scienti�c Computing Research,U.S. Department of Energy, under Contract W-31-109-Eng-38.

A parallel job is both similar to a sequential job and di�erent from one insigni�cant ways. Resource allocation and scheduling are considerably more com-plex, and we do not address those issues here. But for process management issuesalone, complexity arises from the fact that there may be multiple executables,multiple sets of command-line arguments, even di�erent environments for dif-ferent processes. Task farm jobs are di�erent from true parallel jobs in whichprocesses will communicate with one another, not just with a master process.On clusters we must either set up all connections ahead of time or provide someway for a process needing to establish communication with another process toask for help from the process manager (who is the only one who knows wherethat other process is). The �rst approach is not scalable to large numbers ofprocesses, and in scalable applications not all such connections will eventuallybe needed; therefore, a process manager must be able to provide informationservices to parallel jobs to allow connections to be made dynamically. Scalablestartup is needed to make interactive parallel jobs feasible. Parallel jobs alsoneed scalable signal delivery and a reasonable semantics for stdio redirection.We assume familiarity with process management for sequential jobs on Unix.Components of process management we take to be the process id, executablename, environment variables, command-line arguments, signals (especially cntl-C,cntl-Z, and resume signals), stdin, stdout, and stderr and their redirection.We di�erentiate process management from scheduling, which is the problem of lo-cating resources and a time to use them. Batch schedulers often combine schedul-ing with process management.In Section 2 we summarize related work. In Section 3 we state our explicitdesign goals, how these goals lead to implementation decisions, and interestingfeatures of the resulting system, including how it can be used to create a paralleldebugger out of an existing single-process debugger. Section 4 brie
y describesa general-purpose interface between process managers and parallel libraries andhow this interface is implemented on the process manager side by MPD. Sec-tion 5 summarizes preliminary experiments that make us optimistic about theusefulness of MPD as a process manager for large-scale systems. We concludewith a summary of progress to date and a description of our future plans.The MPD system is in use and is available as open source as part of theMPICH system [16], obtainable from http://www.mcs.anl.gov/mpi/mpich.An abbreviated report on this work appeared in [7]. Here we provide moredetail than was possible there, describe new additions to the system, and outlinean interface that can be used by parallel programs to obtain services from aprocess manager like MPD.2 Related WorkAll parallel computing environments that support execution of truly parallelprograms (those in which any two processes can communicate with one another)have had to address at least some of the issues that we address with MPD. Par-allel programming systems, such as PVM [12], p4 [8], and implementations of

MPI such as MPICH [16] and LAM [6] all provide some mechanism for startingand running parallel programs, often with a specialized daemon process. MPDdi�ers from these systems in two ways. First, it is independent of any particu-lar programming library, instead implementing a simple interface (described inSection 4) by which any library, including these, can make use of its services.Second, it is designed speci�cally to enable rapid startup of jobs consisting ofhundreds to thousands of processes.Many systems are intended to manage a collection of computing resourcesfor both single-process and parallel jobs; see the survey by Baker et al. [3].Typically, these use a daemon that manages individual processes, with emphasison jobs involving only a single process. Widely used systems include PBS [20],LSF [21], DQS [9], and Loadleveler/POE [17]. The Condor system [18] is alsowidely used and supports parallel programs that use PVM [22] or MPI [14,23]. More specialized systems, such as MOSIX [4] and GLUnix [13], providesingle-system image support for clusters. Harness [5, 19] shares with MPD thegoal of supporting management of parallel jobs. Its primary research goal isto demonstrate the
exibility of the \plug-in" approach to application design,potentially providing a wide range of services. The MPD system focuses morespeci�cally on the design and implementation of services required for processmanagement of parallel jobs, including high-speed startup of large parallel jobson clusters and scalable standard I/O management. The book [11] provides agood overview of metacomputing systems and issues, and Feitelson [10] surveyssupport for scheduling parallel processes.3 Design of MPDIn this section we describe our goals in constructing MPD and outline the sys-tem's architecture.3.1 GoalsSeveral explicit goals have governed the design of the MPD system.Simplicity The persistent (across jobs) part of the system should be simpleand robust. This part of the system should be runnable as root. If its behav-ior isn't completely transparent, we will never be able to convince systemadministrators to run the daemons as root.Speed Startup of parallel jobs should be quick enough to provide an interactive\feel," so that large but short jobs make sense. Large (in number of processes)but short (in time) characterizes system utilities such as those describedin [15]. Our immediate target is to start 1000 processes in a few seconds,while still providing a way for such processes to establish contact with oneanother. Our long-term goal is to support management of 10,000 processes.Robustness The persistent part of the system should be at least moderatelyfault tolerant. An unexpected crash of one machine should not bring downthe whole system. There should be no single \master" process.

Scalability The complexity or size of any component should not depend on thenumber of components.Individual Process Environments It should be possible to start a paralleljob in which the executable �les, environment variables, and command-linearguments are di�erent for each process. It should be possible to collectreturn codes individually from processes.Collective Identity of a Parallel Job It should be possible to treat a par-allel job as a single entity that can be suspended, continued (signaled, ingeneral), or killed collectively as if it were a single process. The systemshould manage stdin, stdout, and stderr in a useful and scalable way andallow them to be redirected as if the parallel job were a single process. Animportant component of a job's collective identity is its termination. All re-sources allocated for the job, such as �les, System V IPC's, other processes,etc., must be reliably freed, even if the job terminates abnormally.It is explicitly not a goal of the MPD system to provide scheduling services, whichwe believe to be a separate function from process management. We expect thedecision on precisely which resources to use to run a job to be made by a separatescheduler, which will then communicate its decision to the process managementsystem. Design of the interface by which this occurs is an interesting problem,but not addressed here. Note that many existing systems combine schedulingand process management, an organization that we �nd limits
exibility. In thispaper we focus solely on process management.3.2 Deriving the Design from the GoalsThe goals of simplicity and robustness lead us to adopt a multicomponent sys-tem. The daemon itself is persistent (may run for weeks or months at a time,starting many jobs), typically one instance per host in a TCP-connected net-work. Manager processes will be started by the daemons to control the applica-tion processes (clients) of a single parallel job and will provide most of the MPDfeatures. The goal of speed requires that the daemons be in contact with oneanother prior to job startup, and the goals of scalability and \no master" suggestthat the daemons be connected in a ring.1 The services that the managers willprovide (see Section 3.3) suggest that they be in contact as well, and the fastestway for them to form these connections is to inherit part of the ring connectivityof the daemons. Separate managers for each user process support the individualprocess environments. The goal of having a collective identity for a parallel jobleads us to treat the mpirun process as such a representative and use it to de-liver signals and stdin to application processes and collect stdout and stderroutput from them. This suggests that the mpirun process connect �rst to thedaemon ring in order to start the job, and then switch the connection to themanager ring in order to control the job. The goal of speed suggests that these1 While a ring is not ultimately scalable, it is more so than the typical star used inmany process management systems, and our experiments have shown it feasible forthe thousand-daemon domain.

latter connections be restricted to a process running on the same host, eitherthe daemon itself or a persistent gateway process if the daemon is run as root,so that authentication can be through the �le system (a Unix rather than a net-work socket). We refer to all such processes as console commands. The consolecommands mpd, mpdtrace, and mpdallexit manage the daemons themselves;mpdmpexec and mpirun start parallel jobs; and mpdlistjobs, mpdkilljob, andmpdgangjobs help to manage parallel jobs. There are a few others, and it is easyto write new console commands as needed. Finally, in order that this infrastruc-ture be available to support MPI programs or other parallel tools, there needsto be a client library that each application process may use to interact with itsmanager.We do not specify how the daemons are started or connected, since the systemprovides a number of alternatives, and the process need not be particularly fast.A console command is started by the user, either interactively or under thecontrol of a batch scheduler. The daemons fork and exec the managers, whichuse information given them by the daemons to connect themselves into a ring,then fork and exec the clients. The startup messages traverse the ring quickly,so most forking, execing, and connecting takes place in parallel, leading to faststartup even for large jobs. The situation is then as shown in Figure 1, where the
console

daemons

clients

managersFig. 1. Daemons with console process, managers, and clientsclients may be applicationMPI processes. Solid lines represent sockets, except forthe vertical ones, which represent pipes. The dashed lines represent the trees ofconnections for forwarding stdout and stderr, and the dotted lines representpotential connections among the client processes. The dot-dashed line is theoriginal connection from console to local daemon on a Unix socket, which isreplaced during startup by the network connection to the �rst manager.3.3 Interesting FeaturesSpace restrictions prevent a complete description of all the features and capa-bilities of the MPD system, but in this section we mention a few highlights.

Security Whenever a process advertises a \listener" socket and accepts connec-tions on it, the possibility exists that an unknown or even malicious processwill connect. This is particularly dangerous if the process accepting the con-nection can start processes as the MPD daemon can. We currently use the\challenge-response" system described in [24]. In the long run, we expect tomodify this component of the system to use more elaborate schemes and ex-tend them to other connections such as client/gateway authentication. Thiswill have little impact on the job startup speed, since the daemon componentstartup is separate from job startup.Fault Tolerance If a daemon dies, this fact is detected and the ring is reknit.This provides a minimal sort of fault tolerance, since the ring remains intact.A new MPD daemon can be inserted in the ring where the old one was, butthis process is not (yet) automatic.Signals Signals can be delivered to client processes by their managers. We cur-rently use this capability in three speci�c ways. First, signals delivered to aconsole process are propagated to the clients, so that a parallel application asa whole can be suspended with cntl-Z, continued, and killed with cntl-C,just as if it were a single process. Second, in the ch p4mpd device in theMPICH implementation of MPI, client processes can interrupt one anotherwith requests to dynamically establish client-to-client connections. Such re-quests go up into the manager ring from the originating client, around thering to the manager of the target process, which signals its client. Third,a separate console process can be used to implement a simple but e�ectivegang scheduler. Gang scheduling is the process of ensuring that all the pro-cesses of a parallel job are swapped in and scheduled to run at the sametime across a collection of machines; it is particularly important for jobsthat contain a large number of collective operations. MPD can provide gangscheduling by using signals to pause and resume parallel jobs running onthe same collection of machines. This mechanism is also useful for pausinglong-running parallel jobs to run short parallel utility programs.Support for MPI Implementations MPD provdes a version of the BNR li-brary described in Section 4. Version 1.2.1 of MPICH makes calls to thislibrary to �nd out a process's rank, where other processes are and how tocontact them, and so forth.On clusters of SMPs, it is easy to specify that multiple processes areto be started on the same machine and share memory. Speci�cally, mpirun-np 180 -g 2 cpi starts processes in groups of two and places in their en-vironment a key that can be used to acquire group-attached shared memoryand other information needed to set up multimethod communication for anMPI implementation. We use this technique on the Chiba City cluster atArgonne, which has dual CPU nodes.Handling Standard I/O Managers capture the stdout and stderr of theirclients and forward them up a pair of binary trees of socket connections, eachmanager merging stdout and stderr from its client with that from each ofits two children. A command line option tells the managers to provide arank label on each line of output from their clients. A pedestrian but useful

application of this feature is that it helps with programs that may not havebeen written to be parallel in the �rst place. Both standard output anderror output are automatically identi�ed with their source process withouttouching the original code. The feature is also useful when invoking systemutilities in \task farm" mode. The commandmpdmpexec -np 128 ps auxww | grep mpdman�nds (in conjunction with the use of hostname) where mpd's have startedmanagers.Standard input (to mpirun, for example) by default is delivered to theclient managed by manager 0. This seems to be what most MPI users ex-pect and what most MPI implementations do. (The MPI standard does notspecify.) However, control messages can be used to change this behavior todirect stdin to any speci�c client or broadcast it to all clients.Environment Variables By default the DISPLAY environment variable of theshell in which mpirun is invoked is forwarded to the managers and set for theclients. This allows clients to use X graphics. We plan to replace this non-scalable approach with one similar to the one used for stdout and stderr.Other environment variables can be speci�ed on the command line for prop-agating to the application processes.Client Wrapping The semantics of the Unix fork and exec system calls pro-vide useful bene�ts. When a manager forks a client process, for example, it�rst sets up the manager-client pipes for control messages and standard I/O.The \lower" ends of these pipes are inherited by any process that the clientforks. Thus, even though the client is not using any of the client library, man-agers can manage clients that themselves run the \real" application process.We call this scheme client wrapping. Thus mpirun -np 16 nice -5 myproglowers the priority of a parallel job to be run on one's colleagues' worksta-tions, and mpirun -np 16 pty myprog can be used when myprog needs tobe attached to a terminal (otherwise our capture of stdin and stdoutmodi-�es their bu�ering behavior). The program pty is distributed with the MPDsystem.Putting It All Together The combination of I/Omanagement, especially redi-rection of stdin, line labels on stdout, and client wrapping can be surpris-ingly powerful. We have used these features of the MPD system to add anoption to mpirun that invokes gdb as a client wrapper and dynamically redi-rects stdin. While mpirun -np 3 cpi runs cpi directly as an MPI job,mpirun -np 3 -d cpi runs each cpi process under the control of (wrappedby) the gdb debugger. (Other sequential debuggers could be used, but arenot yet supported.) Thus multiple instances of gdb are being run. Output ofthe gdb's is labeled by process rank. The \(gdb)" prompts are interceptedby the mpirun process and counted, so that it can issue an \(mpigdb)"prompt when one has been received from each process. In addition, mpirun-d uses the \z" command (one of the few single letters not already claimedby gdb) to redirect stdin to a speci�c gdb instance or to all processes. Thusprocesses can be stepped and breakpoints can be set either collectively orindividually, and collectively printing a variable will provide all values withrank labels. The following is an example of how this works:

donner% mpirun -np 3 -d cpi # default is stdin bcast(mpigdb) b 33 # set breakpoint for all0: Breakpoint 1 at 0x8049eac: file cpi.c, line 33.1: Breakpoint 1 at 0x8049eac: file cpi.c, line 33.2: Breakpoint 1 at 0x8049eac: file cpi.c, line 33.(mpigdb) r # run all2: Breakpoint 1, main (argc=1, argv=0xbffffab4) at cpi.c:331: Breakpoint 1, main (argc=1, argv=0xbffffac4) at cpi.c:330: Breakpoint 1, main (argc=1, argv=0xbffffad4) at cpi.c:33(mpigdb) n # single step all2: 43 MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);0: 39 if (n==0) n=100; else n=0;1: 43 MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);(mpigdb) z 0 # limit stdin to rank 0(mpigdb) n # single step rank 00: 41 startwtime = MPI_Wtime();(mpigdb) n # until caught up0: 43 MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);(mpigdb) z # go back to bcast(mpigdb) n # single step all.... # several times(mpigdb) n # until interesting spot0: 52 x = h * ((double)i - 0.5);1: 52 x = h * ((double)i - 0.5);2: 52 x = h * ((double)i - 0.5);(mpigdb) p x # bcast print command0: $2 = 0.0050000000000000001 # 0's value of x2: $2 = 0.025000000000000001 # 2's value of x1: $2 = 0.014999999999999999 # 1's value of x(mpigdb) c # continue all0: pi is approximately 3.1416009869231249, Error 0.00000833333333180: Program exited normally.1: Program exited normally.2: Program exited normally.(mpigdb) q # quitdonner%Running the Daemons as Root By default, the MPD daemons are run inordinary user mode. This is useful for development, but in production wedo not wish the machines to �ll up with mpd processes being run by varioususers; we prefer to have only one mpd per machine. To this end the daemonscan be con�gured to be run as root. In this situation the console is a setuidprogram that runs as root only to connect brie
y to the local mpd, thenreassumes the user's user id, group id, and group memberships and sendsthese to the mpd, so that the managers and clients run as the user in everyway. In this mode the daemon is running as a \true" daemon, detached fromany speci�c terminal and logging information and error messages to syslog.

4 A General Process Manager InterfaceOne reason for creating MPD was that no existing process manager really hadthe needed support for parallel jobs that we could use for MPICH. One researchgoal of the project was to determine a minimal set of services that would need tobe added to an existing commercial or open source process manager in order toprovide what was needed by a parallel library to implementMPI, especially MPI-2, with its dynamic process creation and one-sided operations. In this section wedescribe such an interface and how it is used by MPICH and implemented byMPD. The interface decouples MPD from MPICH, allowing MPICH to be usedwith any process manager that implements this simple interface and allowingother sorts of parallel systems besides MPICH to be supported by the MPDruntime system.In Section 1 we mentioned that we consider the scheduler, process manager,and parallel programming library to be separate components of a parallel envi-ronment. We have tried to isolate and simplify the interface between the processmanager and the parallel programming library into a simple speci�cation calledBNR,2 which will be reported on in more detail elsewhere.BNR is the interface by which the parallel programming library (an exampleis MPICH) obtains information from the process manager (an example is MPD)that only the process manager initially knows, such as the rank in the paralleljob of an individual process and the information necessary for a process to dy-namically forge a connection with a process with a di�erent rank. It is also theinterface by which the parallel program library requests actions on the part ofthe process manager. A typical request would be to start processes, either aspart of MPI-2's MPI Comm spawn or with mpirun or mpiexec.The central component of BNR is a primitive database interface consisting ofjob-local put, get, and fence calls, by which processes can place keyword=valuedata into the database, retrieve it by keyword, and coordinate with the otherprocesses in a parallel job to ensure that expected data is deposited before it isaccessed. A few other commands also are used to form dynamic connections.We use this particular interface for scalability. The use of the fence primitivepermits a single synchronization operation after which all data that has been putbefore the fence can be retrieved by a get. The get, put, and fence calls arelocal to groups of processes within jobs, which in an MPI implementation cancorrespond to MPI groups. They play an important role in libraries that usedynamic process creation calls (such as MPI COMM Spawn).MPD implements the BNR interface by keeping the database distributedamong the managers for a job and routing data access requests around themanager ring as necessary. In the ch p4mpd device in the current version ofMPICH, we use only this interface in the implementation, so that any processmanager implementing this interface can be used to manage MPICH programswithout knowing any MPICH internals.2 BNR stands for Bill, Brian, Nick, Rusty, and Ralph, who discussed it until it becameas minimal as it is now.

5 ExperimentsMost development of MPD has been on workstation networks where startup of32-process jobs on �ve workstations is virtually instantaneous, compared withthe approximately 1.5 seconds per process required by the ch p4 version ofMPICH. An early test of the feasibility of using the ring topology showed thata message could make 1024 hops around the ring in less than 0.4 seconds, whichgave us con�dence that the ring would not impose scalability limits, at least inthe near term. Recently we began experiments on Chiba City, a Linux testbedfor parallel computer science research [1]. We performed one set of tests on 211nodes connected by Fast Ethernet. Because we were interested only in processstartup time, we tested execution of trivial parallel jobs, for example,time mpirun -np 211 hostnametime mpirun -np 422 -g 2 hostnameWe found that starting 211 processes (one on each node) and collecting thestdout output of hostname took about 2 seconds to execute. Starting twice asmany processes (one for each CPU) took about 3.5 seconds, including setting upthe relatively complex stdout tree and collecting the output. Sending a messagearound the ring of 211 MPD daemons took only 0.13 seconds.MPD is now running on our Chiba City cluster in root mode, serving as anexperimental production process manager. We have added facilities that allowthe MPD daemons to start jobs linked with Myricom's MPI implementation,MPICH-GM, so that MPI jobs can be started with MPD and run over ChibaCity's Myrinet network.6 Future DevelopmentThe existing MPD system, consisting of daemons, managers, console commands,and client library, meets our goals of simplicity, robustness, and scalability. Itis used for fast startup of MPI jobs and others on systems with hundreds ofmachines. The
exibility of its stdio control mechanism has provided unex-pected bene�ts, such a \poor man's" parallel debugger. It meets our goals forthe collective identity of a parallel job.In the near term, we expect to use the system to implement the dynamicprocess creation part of MPI-2 in MPICH. We also are working on a precisede�nition of how MPD will interoperate with a full-featured scheduling systemsuch as the Maui scheduler [2]. We believe that the MPD daemons can also beginto provide more services, such as run-time performance monitoring.In the long run, as machines grow from hundreds to thousands of nodes, ourrings of daemons and managers may have to grow into a more sophisticatedstructure, such as rings of rings, in order to continue to provide fast startup. Weanticipate that this can be done without substantially changing the MPD designpresented here. We will also need a more sophisticated output merger in orderto provide scalable stdout, for example for large-scale parallel debugging.

In summary, we are �nding the MPD system already a useful contribution toone's parallel programming environment and expect its applicability to expandin the near future. We also view its design as a valuable starting point for futureresearch into large-scale parallel job execution environments.References1. Chiba City home page. http://www.mcs.anl.gov/chiba.2. The Maui scheduler home page. http://maui-scheduler.mhpcc.edu/new doc,http://www.mhpcc.edu/maui.3. M. A. Baker, G. C. Fox, and H. W. Yau. Review of cluster management software.NHSE Review, 1(1), May 1996.4. Amnon Barak, Shai Guday, and Richard G. Wheeler. The MOSIX distributed oper-ating system: Load balancing for UNIX, volume 672 of Lecture Notes in ComputerScience. Springer-Verlag, New York, 1993.5. Micah Beck, Jack J. Dongarra, Graham E. Fagg, G. Al Geist, Paul Gray,James Kohl, Mauro Migliardi, Keith Moore, Terry Moore, Philip Papadopoulous,Stephen L. Scott, and Vaidy Sunderam. HARNESS: A next generation distributedvirtual machine. International Journal on Future Generation Computer Systems,15(5/6), 1999.6. Greg Burns, Raja Daoud, and James Vaigl. LAM: An open cluster environmentfor MPI. In John W. Ross, editor, Proceedings of Supercomputing Symposium '94,pages 379{386. University of Toronto, 1994.7. R. Butler, W. Gropp, and E. Lusk. A scalable process-management environmentfor parallel programs. In Jack Dongarra, Peter Kacsuk, and Norbert Podhorszki,editors, Recent Advances in Parallel Virutal Machine and Message Passing Inter-face, number 1908 in Springer Lecture Notes in Computer Science, pages 168{175,September 2000.8. Ralph Butler and Ewing Lusk. Monitors, messages, and clusters: The p4 parallelprogramming system. Parallel Computing, 20:547{564, April 1994.9. DQS home page. http://www.scri.fsu.edu/~pasko/dqs.html.10. Dror G. Feitelson. A Survey of Scheduling in Multiprogrammed Parallel Systems.Research report rc 19790 (87657), IBM T.J. Watson Research Center, YorktownHeights, NY, February 1995.11. I. Foster and C. Kesselman, editors. The Grid: Blueprint for a New ComputingInfrastructure. Morgan Kaufmann, 1999.12. Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Bob Manchek, andVaidy Sunderam. PVM: Parallel Virtual Machine|A User's Guide and Tutorialfor Network Parallel Computing. MIT Press, Cambridge, Mass., 1994.13. Douglas P. Ghormley, David Petrou, Steven H. Rodrigues, Amin M. Vahdat, andThomas E. Anderson. GLUnix: A Global Layer Unix for a network of workstations.Software|Practice and Experience, 28(9):929{961, July 1998.14. William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, BillNitzberg, William Saphir, and Marc Snir. MPI|The Complete Reference: Vol-ume 2, The MPI-2 Extensions. MIT Press, Cambridge, MA, 1998.15. William Gropp and Ewing Lusk. Scalable Unix tools on parallel processors. InProceedings of the Scalable High-Performance Computing Conference, pages 56{62.IEEE Computer Society Press, 1994.

16. William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. A high-performance, portable implementation of the MPI Message-Passing Interface stan-dard. Parallel Computing, 22(6):789{828, 1996.17. IBM. Loadleveler: Using and Administering, version 2 release 1 edition, November1998. SA22-7311-00.18. M. J. Litzkow, M. Livny, and M. W.Mutka. Condor { A hunter of idle workstations.In Proc. 8th Intl. Conf. on Distributed Computing Systems, pages 104{111, SanJose, Calif., June 1988.19. M. Migliardi and V. Sunderam. PVM emulation in the Harness metacomput-ing system: A plug-in based approach. In J. J. Dongarra, E. Luque, and TomasMargalef, editors, Recent advances in parallel virtual machine and message pass-ing interface: 6th European PVM/MPI Users' Group Meeting, Barcelona, Spain,September 26{29, 1999: Proceedings, volume 1697 of Lecture Notes in ComputerScience, pages 117{124, Berlin, 1999. Springer-Verlag.20. PBS home page. http://pbs.mrj.com/.21. Load Sharing Facility (LSF). http://www.platform.com.22. J. Pruyne and M. Livny. Interfacing Condor and PVM to harness the cyclesof workstation clusters. Future Generation Computer Systems, 12(1):67{85, May1996.23. Marc Snir, Steve W. Otto, Steven Huss-Lederman, David W. Walker, and JackDongarra. MPI|The Complete Reference: Volume 1, The MPI Core, 2nd edition.MIT Press, Cambridge, MA, 1998.24. Andrew S. Tanenbaum. Computer Networks. Prentice Hall, third edition, 1996.

